Binary Search
int binary_search(vector<int> arr, int item){
int start = 0, end = arr.size() - 1;
int ans = -1; // -1 means element not found
while(start <= end){
int mid = start + (end - start) / 2;
if(arr[mid] == item){
ans = item;
break;
}
else if(arr[mid] < item){
start = mid + 1;
} else {
end = mid - 1;
}
}
return ans;
}
There is also a recursive way to do binary search.
int binary_search(vector<int> arr, int start, int end, int target){
if(start < end) return -1; // element not found
int mid = start + (end - start) / 2;
if(arr[mid] == target)
return mid;
else if(arr[mid] < target)
return binary_search(arr, mid + 1, end, target);
else
return binary_search(arr, start, mid - 1, target);
}
Here are some question which will use binary search with some modifications
- Divide a sorted array in two parts and then change position of the parts do binary search in this array
- Find the lower bound and upper bound of given element
- Given a monotonic increasing function, we have to find a value which will give a particular result from the function
Lower bound of k, element that is greater than and equal to k
int lower_bound(vector<int> arr, int target){
int start = 0, end = arr.size() - 1;
int ans = arr.size();
while(start <= end){
int mid = start + (end - start) / 2;
if(arr[mid] >= target){
ans = mid;
end = mid - 1;
} else {
start = mid + 1;
}
}
return ans;
}
Upper bound of k, first element that is greater than k
int upper_bound(vector<int> arr, int target){
int start = 0, end = arr.size() - 1;
int ans = arr.size();
while(start <= end){
int mid = start + (end - start) / 2;
if(arr[mid] > target){
ans = mid;
end = mid - 1;
} else {
start = mid + 1;
}
}
return ans;
}