0/1 knapsack type problem
Description
- we are given
- two arrays - one for the weight of item and one for the price
- a value which is equal to the capacity of knapsack
- for each item we have a choice
- we should take the item
- we should not take the item
- you cannot take half of the item
Recursive Solution
#include<bits/stdc++.h>
using namespace std;
// only things that change represent state
// here state is -> (W, n)
int knapSack(
vector<int>wt, // weight of items array
vector<int>val, // value associated with each item
int W, // amount of weight we can add to knapsack
int n // current item + 1 number
){
// base condition, when either knapsack is full, or items are over
if (n == 0 || W == 0) return 0;
// if current item can be stored in the knapsack
if (wt[n - 1] <= W) {
return max(
val[n - 1] + knapSack( wt, val, W - wt[n - 1], n - 1),
knapSack(wt, val, W, n - 1)
);
}
else {
return knapSack(wt, val, W, n - 1);
}
}
int main(){
vector<int> val = { 60, 100, 120 };
vector<int> wt = { 10, 20, 30 };
int n = val.size();
int W = 50;
cout << knapSack(wt, val, W, val.size());
return 0;
}
Memoization solution
#include<bits/stdc++.h>
using namespace std;
// cache the state results, state is represented by (W, n), values that change
vector<vector<int>> dp;
int knapSack(vector<int>wt, vector<int>val, int W, int n){
// base case
if (n == 0 || W == 0) return 0;
// getting cache result
if(dp[n][W] != -1) return dp[n][W];
if (wt[n - 1] <= W)
return dp[n][W] = max(
val[n - 1] + knapSack(wt, val, W - wt[n - 1], n - 1),
knapSack(wt, val, W, n - 1)
);
else
return dp[n][W] = knapSack(wt, val, W, n - 1);
}
int main(){
vector<int> val = { 60, 100, 120 };
vector<int> wt = { 10, 20, 30 };
int n = val.size();
int W = 50;
dp = vector<vector<int>> (n+1, vector<int>(W+1, -1));
cout << knapSack(wt, val, W, n);
return 0;
}
top down approach
#include<bits/stdc++.h>
using namespace std;
int knapSack(int W, vector<int>wt, vector<int>val, int n){
// state cache, (n, W) represented state
vector<vector<int>> dp(n+1, vector<int>(W+1, 0));
// for base case solution is already 0, which is as initialized
// finding solution for remaining problems
// for iterating through the item state set
for(int i=1;i<n+1;i++){
// for iterating though the weight state sets
for(int j=1;j<W+1;j++){
if(wt[i-1] <= j)
dp[i][j] = max(val[i-1] + dp[i-1][j-wt[i-1]], dp[i-1][j])
else
dp[i][j] = dp[i-1][j];
}
}
return dp[n][W];
}
int main(){
vector<int> val = { 60, 100, 120 };
vector<int> wt = { 10, 20, 30 };
int n = val.size();
int W = 50;
cout << knapSack(W, wt, val, n);
return 0;
}
practice que