Matrix chain multiplications type problem
description
- you are given an array, or a string
- you have to calculate something which depends on the subarray between the range
recursive code
#include <bits/stdc++.h>
using namespace std;
// state -> (i, j)
int solve(vector<int> p, int i, int j) {
if (i == j) return 0; // base condition
int min = INT_MAX; // answer to return
for (int k = i; k < j; k++) { // check all sub arrays
// split array into tow subarray
int count = solve(p, i, k) +
solve(p, k + 1, j) +
p[i - 1] * p[k] * p[j]; // cost of combining two subarray
if (count < min) min = count;
}
return min;
}
int main(){
vector<int> arr = { 1, 2, 3, 4, 3 };
cout << solve(arr, 1, arr.size() - 1);
return 0;
}
memoization sol
#include <bits/stdc++.h>
using namespace std;
vector<vector<int>> dp;
int solve(vector<int> p, int i, int j) {
if (i == j) return 0; // base condition
if(dp[i][j] != -1) return dp[i][j];
int min = INT_MAX; // answer to return
for (int k = i; k < j; k++) { // check all sub arrays
// split array into tow subarray
int count = solve(p, i, k) +
solve(p, k + 1, j) +
p[i - 1] * p[k] * p[j]; // cost of combining two subarray
if (count < min) min = count;
}
return dp[i][j] = min;
}
int main(){
vector<int> arr = { 1, 2, 3, 4, 3 };
int n = arr.size();
dp = vector<vector<int>> (n+1, vector<int> (n+1, -1));
cout << solve(arr, 1, n - 1);
return 0;
}
top down approach
#include <bits/stdc++.h>
using namespace std;
int solve(vector<int> p) {
int n = p.size();
vector<vector<int>> dp(n+1, vector<int> (n+1, 0));
// length of subarray you will traverse
for(int len=2;len<n+1;len++){
for(int i=1;i<= n-len+1; i++){
int j=i+len-1;
dp[i][j] = INT_MAX;
for (int k = i; k < j; k++) {
int count = dp[i][k] + dp[i+1][k] + p[i - 1] * p[k] * p[j];
dp[i][j] = min(dp[i][j], count);
}
}
}
return dp[n][b];
}
int main(){
vector<int> arr = { 1, 2, 3, 4, 3 };
int n = arr.size();
cout << solve(arr, 1, n - 1);
return 0;
}
practice question
- matrix chain multiplication
- palindrome partitioning
- evaluate expression to true boolean parenthesization
- scrambled string
- egg dropping problem