Unbounded knapsack type problem
Description
- we are given
- two arrays - one for the weight of item and one for the price
- a value which is equal to the capacity of knapsack
- for each item we have a choice
- we should take the item multiple times
- we should not take the item
- you cannot take half of the item
recursive sol
#include<bits/stdc++.h>
using namespace std;
// state represented by (W, n)
int knapSack(vector<int>wt, vector<int>val, int W, int n){
// base case, items are over or knapsack is full
if (n == 0 || W == 0) return 0;
// can we add current item
if (wt[n - 1] <= W)
return max(
val[n - 1] + knapSack(wt, val, W - wt[n - 1], n), // use item and remain on same item
knapSack(wt, val, W, n - 1) // mode to next item
);
else
return knapSack(wt, val, W, n - 1); // move to next item
}
int main(){
vector<int> val = { 60, 100, 120 };
vector<int> wt = { 10, 20, 30 };
int n = val.size();
int W = 50;
cout << knapSack(wt, val, W, val.size());
return 0;
}
memoization solution
#include<bits/stdc++.h>
using namespace std;
// cache for storing result of the cache -> (W, n)
vector<vector<int>> dp;
int knapSack(vector<int>wt, vector<int>val, int W, int n){
if (n == 0 || W == 0) return 0;
// get result form the cache
if(dp[n][W] != -1) return dp[n][W];
if (wt[n - 1] <= W)
return dp[n][W] = max(
val[n - 1] + knapSack(wt, val, W - wt[n - 1], n),
knapSack(wt, val, W, n - 1)
);
else
return dp[n][W] = knapSack(wt, val, W, n - 1);
}
int main(){
vector<int> val = { 60, 100, 120 };
vector<int> wt = { 10, 20, 30 };
int n = val.size();
int W = 50;
dp = vector<vector<int>> (n+1, vector<int>(W+1, -1));
cout << knapSack(wt, val, W, n);
return 0;
}
top down approach
#include<bits/stdc++.h>
using namespace std;
int knapSack(int W, vector<int>wt, vector<int>val, int n){
// storing results for the state (W, n)
// state results array
vector<vector<int>> dp(n+1, vector<int>(W+1, 0));
// basecases are already initialized to 0
// iterating over rest of the states
// going through items
for(int i=1;i<n+1;i++){
// going through weight
for(int j=1;j<W+1;j++){
if(wt[i-1] <= j)
dp[i][j] = max(
val[i-1] + dp[i][j-wt[i-1]],
dp[i-1][j]
)
else
dp[i][j] = dp[i-1][j];
}
}
return dp[n][W];
}
int main(){
vector<int> val = { 60, 100, 120 };
vector<int> wt = { 10, 20, 30 };
int n = val.size();
int W = 50;
cout << knapSack(W, wt, val, n);
return 0;
}
practice que
- unbounded knapsack
- rod cutting problem
- coin change problem - maximum no. of ways
- coin change problem - minimum no of coins