Skip to content

Master's Theorem

  • used for recurrence relations
  • for example divide and conquer
\[ T(n) = a \times T \left( \frac{n}{b} \right) + f(n) \]

here

  • \(n\) is the size of sample input

also,

  • \(n/b\) in how many parts we divided the problems
  • and \(f(n)\) is the complexity of merging those parts
  • \(a\) no of subproblem
\[ T(n) = b^{c_{crit}} \times T\left(\frac{n}{b}\right) + f(n) \]
\[ T(n) = b^{c_{crit}} \times T\left(\frac{n}{b}\right) + O(n^c) \]
  • \(c < c_{crit}\)
    • \(T(n) = \Theta(n^{c_{crit}})\)
  • \(c > c_{crit}\)
    • \(T(n) = \Theta(n^{c})\)
  • \(c = c_{crit}\)
    • \(T(n) = \Theta(n^c \log n)\)
      • another thing is, if \(f(n) = \Theta(n^{c_{crit}} \log^k n)\)
        • \(k > -1\) then \(T(n) = \Theta(n^c \log^{k+1} n)\)
        • \(k = -1\) then \(T(n) = \Theta(n^c \log \log n)\)
        • \(k < -1\) then \(T(n) = \Theta(n^c)\)