Number Theory
Modular arithmetic
- \(a \equiv (a-p) \mod p\)
- \(a \equiv (a+np) \mod p\), \(n \in \text{Z}\)
- \(a \equiv b \mod p \implies a - k \equiv b - k \mod p\)
- \(a_1 \equiv b_1 \mod p\) and \(a_2 \equiv b_2 \mod p\), then
- \(a_1 + a_2 \equiv b_1 + b_2 \mod p\)
- \(a_1 - a_2 \equiv b_1 - b_2 \mod p\)
- \(a_1 \times a_2 \equiv b_1 \times b_2 \mod p\)
- \((ab) \mod p = ((a \mod p)(b \mod p))\mod p\)
- \((a+b) \mod p = ((a \mod p) + (b \mod p))\mod p\)
Fermat little theorem
Given, a no. \(a\) and a prime no. \(p\),
\[
a^{p-1} \equiv 1 \mod p
\]
Euler's Theorem
Given no \(a\) and \(b\), and \(a\) and \(b\) are co-primes
\[
a^{\phi(b)} \equiv 1 \mod b
\]
- Euler's totient function, \(\phi(n) = \#\{x: \gcd(x, n) = 1 \text{ and } x \in \{1,2,...,n\}\}\)
Wilson's theorem
Given a prime no \(a\),
\[
(a-1)! \equiv -1 \mod a
\]
Applications
Modulus of any given Exponent
- find the value of
\[
a^b \mod c
\]
- find the cycle length, let it be \(l\)
- then, \(a^b \mod c = a^{b \mod l} \mod c\)
Example,
-
\(5^{123} \mod 7\)
- \(5^{123} \mod 7\)
- use fermat theorem, \(a^{p-1} \equiv 1 \mod p\), for prime \(p\), so cycle length is 6
- \(5^{123 \mod 6} \mod 7 = 6\)
-
Finding Unit Digit in Exponent, i.e. mod 10
- Find, \(x^n \mod 10\), first reduce \(x\) to \((x \mod 10)\), so we only have to find rules for \(\{2, ..., 9\}\)
- \(2^n \equiv f(n \mod 4) \mod 10, n \ne 0 \text{, where, } f(x) = \{(0, 6), (1, 2), (2, 4), (3, 8)\}\)
- \(3^n \equiv f(n \mod 4) \mod 10, n \ne 0 \text{, where, } f(x) = \{(0, 1), (1, 3), (2, 9), (3, 7)\}\)
- \(4^n \equiv f(n \mod 2) \mod 10, n \ne 0 \text{, where, } f(x) = \{(0, 6), (1, 4)\}\)
- \(5^n \equiv 5 \mod 10\)
- \(6^n \equiv 6 \mod 10\)
- \(7^n \equiv f(n \mod 4) \mod 10, n \ne 0 \text{, where, } f(x) = \{(0, 1), (1, 7), (2, 9), (3, 3)\}\)
- \(8^n \equiv 2^{3n} \mod 10\)
- \(9^n \equiv f(n \mod 2) \mod 10, n \ne 0 \text{, where, } f(x) = \{(0, 1), (1, 9)\}\)
-
Finding the last two digits in Exponent, i.e. mod 100
- Find, \(x^n \mod 100\), first reduce \(x\) to \((x \mod 100)\), so we only have to find rules for \(\{2, ..., 99\}\), which is still huge
- Use this theorem, \((10x + y)^{n} \equiv 10nxy^{n-1} + y^n \mod 100\)
- Proof:
- \((10x + y)^{n} \mod 100\)
- Using binomial expansion, \(y^n + C_1^n(10x)y^{n-1} + C_2^n(10x)^2y^{n-2} + ... + (10x)^n \mod 100\)
- We know that, \((10x)^a \equiv 0 \mod 100\), for \(a >=2\), so our expression reduce to
- \(y^n + C_1^n 10xy \mod 100 = 10nxy + y^n \mod 100\)
- Proof:
- Now we only have to find, \(y^n \mod 100\) and \(y^{n-1} \mod 100\), and \(y \in \{1,2,\cdots,9\}\)
- \(2^n \equiv f(n \mod 2) \mod 100, n \ne 0 \text{, where, } f(x) = \{(0, 24), (1, 76)\}\)
- \(3^n \equiv 81^{\lfloor n/4 \rfloor} + 3^{n \mod 4} \mod 100\), now use the theorem given above for 81
- \(4^n \equiv 2^{2n} \mod 100\)
- \(5^n \equiv 25 \mod 100\)
- \(6^n \equiv 2^n 3^n \mod 100\)
- \(7^n \equiv f(n \mod 4) \mod 100, n \ne 0 \text{, where, } f(x) = \{(0, 1), (1, 7), (2, 49), (3, 43)\}\)
- \(8^n \equiv 2^{3n} \mod 100\)
- \(9^n \equiv 81^{\lfloor n/2 \rfloor} + 9^{n \mod 2} \mod 100\), now use the theorem given above for 81